NITROGEN TREATMENT IN LAGOONS

Dr. Rakesh Govind
Professor of Chemical Engineering
University of Cincinnati and
President, PRD Tech, Inc.

NITROGEN REMOVAL

- Over 7000 lagoon systems are used in the United States for the treatment of municipal and industrial wastewater, under a wide range of weather conditions;
- Nitrogen removal capability of wastewater lagoons has been given little consideration in system designs until the past 10 years or so; ammonia is toxic to fish and nitrate in effluent can limit spray irrigation;
- Ammonia-N removal in facultative wastewater stabilization lagoons can occur through the following three processes:
 - Gaseous ammonia stripping to the atmosphere,
 - Ammonia assimilation in algal biomass, and
 - Biological nitrification.

AMMONIA VOLATIZATION

$$\left[H^{+}\right] = \frac{K_{W}}{\left[OH^{-}\right]}$$

$$C = NH_4^{+} + NH_3$$

$$C = NH_4^{+} + NH_3$$

$$NH_3 = \frac{C}{1 + 10^{pK_W - pK_b - pH}}$$

$$pK_W = -logK_W = -14$$

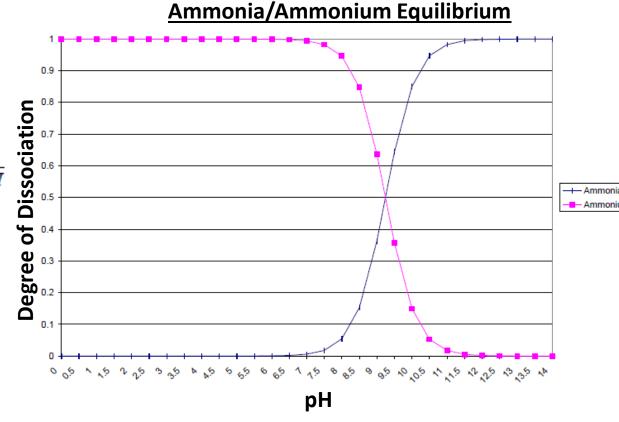
$$T = \frac{0.5AT_a + QT_i}{0.5AT_a + QT_i}$$

$$O(S) = 0.8 - 0.8$$

$$pK_W = -logK_W = -14$$

$$T = \frac{0.5AT_a + QT_i}{0.5A + Q}$$

 $A = surface area of pond, m^2$


 $T_a = ambient \ air \ temperature, {}^{\circ}C$

 $T_i = \inf luent temperature, {}^{\circ}C$

 $Q = \inf luent flow rate, m^3 / day$

$$pH = 7.3e^{0.0005ALK}$$

where: ALK = expected influent alkalinity mg/L

At typical operating pH of 8.0, 95% of ammonia-N is in the form of ammonium, and hence volatilization losses are low

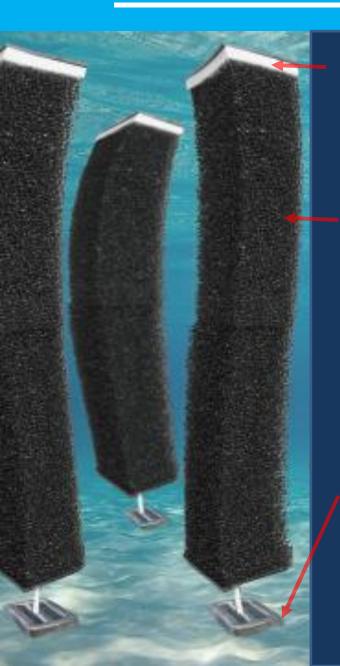
NITROGEN REMOVAL MODELS

Ammonia nitrogen assimilation into biomass depends upon the biological activity in the system and is affected by several factors such as temperature, organic load, detention time and wastewater characteristics;

In lagoons with sludge depths above 2 ft, anoxic decomposition of sludge at the bottom of Lagoon releases Volatile Fatty Acids (VFAs) and ammonia into lagoon water; VFAs contribute to cBOD in the lagoon effluent; Dredging is expensive and generates substantial waste material;

$$\mu = \mu_m \frac{N}{K_N + N} \frac{O_2}{K_{O_2} + O_2} [1 - 0.83(7.2 - pH)]$$

N = concentration of ammonium ion, mg/L

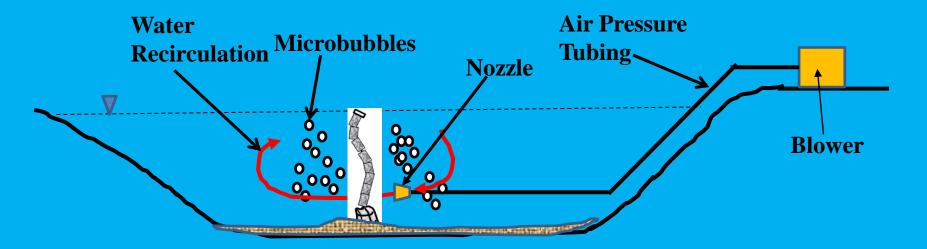

O2 = concentration of dissolved oxygen, mg/L

Ko2 = half-saturation constant for dissolved oxygen, mg/L

$$\mu = 10^{0.0413T-0.94}$$

$$K_{xr} = 10^{0.015T-1.158}$$

WAVING BIOMEDIA IN LAGOONS



Flotation Foam to ensure that biomedia stays buoyant in the water, even after biofilm growth

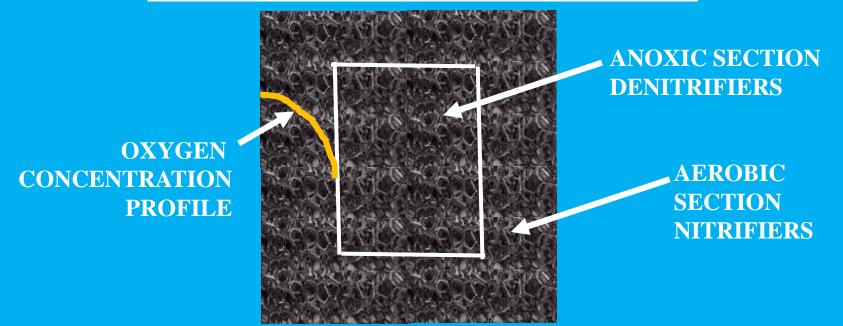
Biomedia waves around in the water; High surface area, coated to allow rapid growth of active biofilms; treats BOD and denitrifies Nitrogen content in wastewater

Weighted down to keep biomedia in place

IN-SITU LAGOON WATER TREATMENT

In-Situ Water Treatment is achieved with no water pump around system.

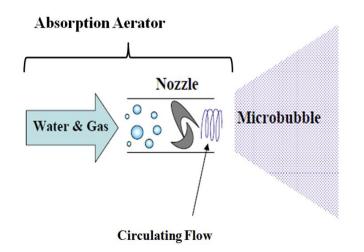
Media stack waves around in the water, but stays in place, as the water moves around it, and gets treated by the active biofilms on the surface of the biomedia


The air is injected in the form of microbubbles at the bottom of the Biomedia stack, and provides dissolved oxygen in the recirculating water

Several Biomedia stacks in one lagoon can effectively treat the water

The air blower is kept outside the water for easy access.

NITRIFICATION/DENITRIFICATION

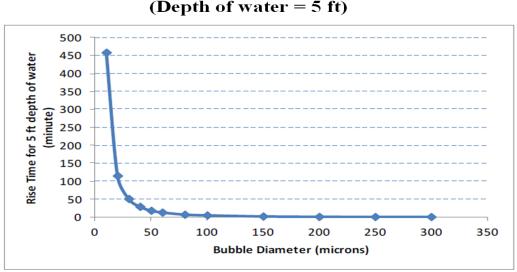

FOAM USED IN WAVING BIOMEDIA

- Waving Biomedia increases active biomass concentration from 200 – 500 mg/L in facultative lagoons and 1,200 – 2,000 mg/L in aerated lagoons, to 14,000 – 16,000 mg/L, thereby increasing biotransformation rates;
- Waving Biomedia retains nitrifiers and denitrifiers; and
- Increases sludge retention time (SRT), which allows biomass to decay and not accumulate in lagoon.

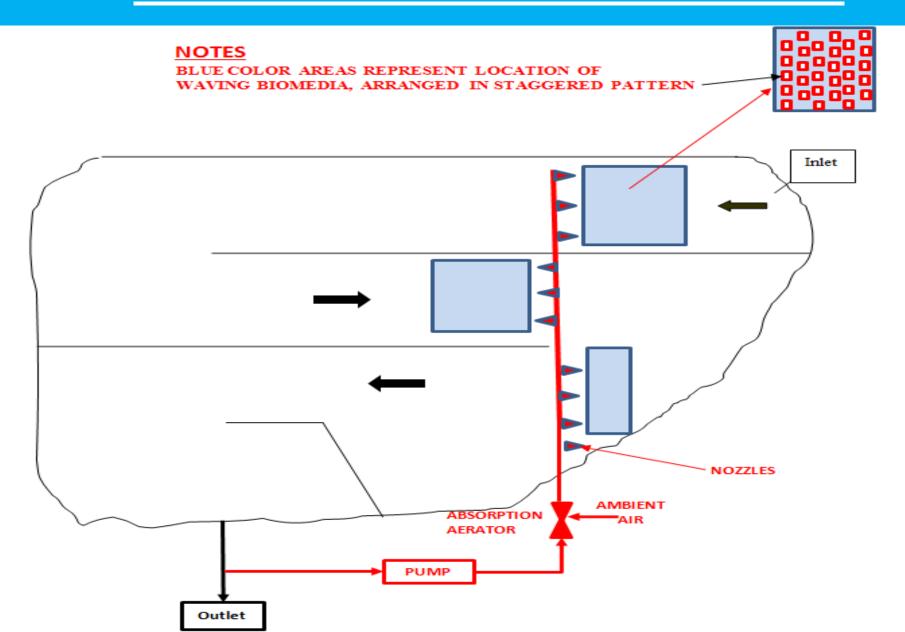
MICROBUBBLE AERATION

ABSORPTION AERATOR MECHANISM

Bubble Size (µm)	Production Method	Properties
> 50	Submerged aeration, sparging, surface aeration, etc	Bubble coalesce into larger bubbles, rise quickly and break on the surface; oxygen transfer efficiency is less than 10% in clean water and less than 6% in wastewater
< 50	Absorption Aerator	Negatively charged surface of bubble prevents coalescence and bubble spends enough time within the water to achieve enhanced oxygen transfer; Once the bubble size becomes smaller than 10 µm due to air dissolution, the bubble does not rise to the surface, since its mass is balanced by its buoyancy; Microbubbles smaller than 10 µm effectively attach to submerged surfaces, thereby never rising to the water surface


•	Following are variou	s AOTR's for mechanical
	aeration devices:	lbs. O ₂ /hp/hr

•	Absorp	otion Aerator	2.73 -3.06
---	--------	---------------	------------


- Surface aerator w/draft tube 1.2 2.1
- Surface high speed 1.2 - 2.0
- Submerged turbine 1.0 - 2.0
- Submerged turbine/sparger 1.2 - 1.8
- Surface brush and blade 0.8 - 1.8
- Fine Bubble Diffusers 0.5 - 1.5

RISE TIME FOR MICROBUBBLE

(Depth of water = 5 ft)

APPLICATION OF WAVING BIOMEDIA AND MICROBUBLE AERATION IN LAGOONS

LAGOON WITH WAVING MEDIA

Waving Media Bioreactor (WMBR)

	Lagoon Information			
Name				
		Lagoon 1	G II	
	e of Lagoon	5,264,963	Gallons	
_	h of Lagoon	425	feet	
Width	of Lagoon	400	feet	
Depth	of Lagoon	15	feet	
Influer	nt Wastewater flowrate	1,300,000	gallons per day (gpd)	
Influer	nt temperature	77	deg F	
Lowes	t Ambient Temperature	40	deg F	
Highe	st Ambient Temperature	85	deg F	
Numbe	er of cells in lagoon	1		
	Type of Aeration system		Surface Aerators: 1;	
Туре о			Submerged Bubble Aeration: 2	
			Absorption Aerator: 3	
Influer	nt Biological Oxygen Demand (BOD)	8091	mg/L	
Influer	nt Total Suspended Solids (TSS)	2277	mg/L	
Influer	nt Total Kjeideihl Nitrogen (TKN)	96	mg/L	
Influer	nt Ammonia (NH3)	0	mg/L	
Influer	nt Chemical Oxygen Demand (COD)	24272	mg/L	
Dissol	ved oxygen concentration in Lagoon	3	mg/L	
pH of v	vater in Lagoon	7		
Desire	ed BOD Removal Efficiency in Lagoon	92	%	
Desire	ed TKN Removal Efficiency in Lagoon	92	%	
Power	from Surface aerators in Lagoon	0	HP	

Kinetic Rate Constant for BOD at 20 deg C	1.2	day-1	
Yield of Biological Solids by BOD degradation	0.67		
Temperature parameter for kinetic constant	1.06		
Biomass decay constant	0.07	day-1	
Ratio of Volatile Suspended Solids to Total Biological Solids	0.8		
Conversion factor from BOD5 to BOD liquid	0.68		
Rating of surface aerators	3	lbs oxygen/hp.hr	
Dissolved Oxygen concentration at 20 deg C	9.08	mg/L	
Horse power required for complete mixing	0.6	hp/1000 ft3	
Surface area of Waving Biomedia	280	ft2/ft3	
Volume of each Wave Biomedia (4 in x 4 in x 6.5 ft)	0.72	ft3	
Surface area of each Wave Biomedia	202.22	ft2	
Maximum BOD Treatement Rate by Biomedia	0.005	lb BOD/ft2.day	
Maximum TKN Treatment Rate by Biomedia	0.0004	lb TKN/ft2.day	

Design Calculations			
Surface area of Lagoon	170000	ft2	
	54.4	deg F (If this is less than 32 deg F, there is	
Lowest Lagoon Water temperature	34.4	possibility of freezing)	
	12.4	deg C	
Highest Lagoon Water temperature	81.9	deg F	
	27.7	deg C	
Hydraulic Retention Time	14.67	days	
Kinetic constant for BOD in winter	0.7727	day-1	
Kinetic constant for BOD in summer	1.8811	day-1	
Exit BOD concentration in summer without Waving Biomedia	282.91	mg/L	
Treatment Efficiency in summer without Waving Biomedia	96.50	% reduction in BOD	
Exit BOD concentration in winter without Waving Biomedia	655.83	mg/L	
Treatment Efficiency in winter without Waving Biomedia	91.89	% reduction in BOD	
Concentration of Biological Solids Produced without Waving Bion	2581	mg/L VSS in summer	
Concentration of Biological Solids Froduced without waving Biol	2458	mg/L VSS in winter	
Suspended Solids in the Lagoon before settling without Waving B	5503	mg/L in summer	
Suspended Solids in the Lagoon before setting without waving D	5349	mg/L in winter	
Amount of biological solids produced that settle	27981	lbs of sludge/day in summer	
Amount of biological solids produced that settle	26645	lbs of sludge per day in winter	
Effluent TKN Concentration without Waving Biomedia	40	mg/L	
Effluent Ammonia concentration without Waving Biomedia	0	mg/L	
Oxygen consumption without Waving Biomedia	75404	lbs/day in summer	
Oxygen consumption without waving Biomedia	71936	lbs/day in winter	
Dissolved Equilibrium Oxygen Concentration in water.	10.71	mg/L in winter	
Dissolved Equinorium Oxygen Concentration in water.	7.91	mg/L in summer	
Convection factor for Overgon Dissolution	0.60	at winter temperature	
Correction factor for Oxygen Dissolution	0.55	at summer temperature	
Field Transfer Rate of Oxygen	1.81	lbs oxygen/hp.hr at winter temperature	
Field Fransier Rate of Oxygen	1.66	lbs oxygen/hp.hr at summer temperature	
Horse Power required for surface sevetors if surface sevetors or	1896	HP in summer	
Horse Power required for surface aerators, if surface aerators ar	1656.80	HP in winter	
Surface Aerator Power required for complete mixing	422	HP	
Degree of mixing in Lagoon	0.00		

	3	•
Surface Area of Wave Biomedia needed	321,851	ft2
Number of Wave Biomedia pieces needed	1592	
Additional Oxygen Needed by Absorption Aerator	2910	lbs of oxygen/day
Flowrate of Recycle Water	416	gpm
Number of nozzles in Lagoon	14	
Flowrate through each nozzle	30	gpm

CONCLUSIONS

- Facultative and aerated lagoons are unable to remove nitrogen effectively, due to limited concentrations of Nitrifiers and Denitrifiers, lack of dissolved oxygen and low temperature, in winter;
- Use of Waving Biomedia retains and increases concentration of active biomass, including nitrifiers and denitrifiers, thereby reducing total nitrogen concentrations in the effluent; spray irrigation of lagoon effluent requires low nitrate levels;
- Microbubble aeration increases dissolved oxygen levels and mixing levels in the lagoon, thereby improving lagoon effluent quality; and
- Lagoon computer simulation program, allows treatment levels to be determined with and without Waving Biomedia and microbubble aeration.